Перевод: с русского на все языки

со всех языков на русский

Найти линию

  • 1 найти линию поведения

    v

    Dictionnaire russe-français universel > найти линию поведения

  • 2 регрессионный анализ

    1. regression analysis
    2. en regression analysis

     

    регрессионный анализ
    Метод оценки, использующий регрессионный способ по измеренным значениям, например, для сортировки по классам.
    [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва 2003 г.]

    регрессионный анализ
    Раздел математической статистики, объединяющий практические методы исследования регрессионной зависимости (см. Регрессия) между величинами по данным статистических наблюдений. Итальянский статистик Р.Бенини, как считается, был первым, кто с практической пользой применил в экономике метод множественной регрессии. (1907) Он удачно оценил функцию спроса на кофе в Италии как функцию цен на кофе с одной стороны и на сахар — с другой. История знает, однако, немало ложных выводов, показывающих, что без глубокого анализа доверять обнаруженным регрессионным зависимостям бывает рискованно. Метод Р.а. состоит в выводе уравнения регрессии (включая оценку его параметров), с помощью которого находится средняя величина случайной переменной, если величина другой (или других в случае множественной или многофакторной регрессии) известна. (В отличие от этого корреляционный анализ применяется для нахождения и выражения тесноты связи между случайными величинами)[1]. Практически речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности точно отражающую заключенную в этом множестве закономерность, тенденцию — линию регрессии. Для этого требуется наилучшим образом оценить параметры уравнения. Существует ряд математико-статистических приемов, позволяющих решить эту задачу. В случаях, когда искомая закономерность может быть принята за линейную, наиболее эффективен метод наименьших квадратов. Р.а. применяется в различного рода экономических исследованиях (производственные функции, анализ эластичности спроса от цены и др.), особенно при анализе хозяйственной деятельности предприятий (для определения влияния отдельных факторов на результаты) и во многих других областях экономической науки и хозяйственной практики. Пример: средняя себестоимость поковок в кузнечных цехах московских заводов, по статистическим исследованиям, описывалась уравнением регрессии: Y = 72,8 + 0,605x1 + 0,082x2 + + 0,834x3, где x1 — заработная плата на 1 т поковок; x2 — удельная металлоемкость, x3 — удельные цеховые расходы. Это уравнение означает, что лишний расход одного рубля заработной платы приведет (в среднем в большой массе наблюдений) к повышению себестоимости тонны поковок на 0,605 руб. Соответственно рассчитывается и влияние двух остальных факторов. [1] Впрочем, распространена также более широкая трактовка Р.а., охватывающая и то, что здесь названо корреляционным анализом. И, наконец, ряд авторов считают Р.а. частью теории корреляции как общей теории взаимоотношений между случайными величинами.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    • виды (методы) и технология неразр. контроля
    • экономика

    EN

    3.3 регрессионный анализ en regression analysis

    Набор процедур, связанных с оцениванием моделей                   fr analyse de régression

    зависимости отклика от предсказывающих переменных

    Источник: Р 50.1.040-2002: Статистические методы. Планирование экспериментов. Термины и определения

    3.3 регрессионный анализ en regression analysis

    Набор процедур, связанных с оцениванием моделей                   fr analyse de régression

    зависимости отклика от предсказывающих переменных

    Источник: 50.1.040-2002: Статистические методы. Планирование экспериментов. Термины и определения

    Русско-английский словарь нормативно-технической терминологии > регрессионный анализ

  • 3 линейное программирование

    1. linear programming

     

    линейное программирование

    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    линейное программирование
    Область математического программирования, посвященная теории и методам решения экстремальных задач, характеризующихся линейной зависимостью между переменными. В самом общем виде задачу Л.п. можно записать так. Даны ограничения типа или в так называемой канонической форме, к которой можно привести все три указанных случая Требуется найти неотрицательные числа xj (j = 1, 2, …, n), которые минимизируют (или максимизируют) линейную форму Неотрицательность искомых чисел записывается так: Таким образом, здесь представлена общая задача математического программирования с теми оговорками, что как ограничения, так и целевая функция — линейные, а искомые переменные — неотрицательны. Обозначения можно трактовать следующим образом: bi — количество ресурса вида i; m — количество видов этих ресурсов; aij — норма расхода ресурса вида i на единицу продукции вида j; xj — количество продукции вида j, причем таких видов — n; cj — доход (или другой выигрыш) от единицы этой продукции, а в случае задачи на минимум — затраты на единицу продукции; нумерация ресурсов разделена на три части: от 1 до m1, от m1 + 1 до m2 и от m2 + 1 до m в зависимости от того, какие ставятся ограничения на расходование этих ресурсов; в первом случае — «не больше», во втором — «столько же», в третьем — «не меньше»; Z — в случае максимизации, например, объем продукции или дохода, в случае же минимизации — себестоимость, расход сырья и т.п. Добавим еще одно обозначение, оно появится несколько ниже; vi — оптимальная оценка i-го ресурса. Слово «программирование» объясняется здесь тем, что неизвестные переменные, которые отыскиваются в процессе решения задачи, обычно в совокупности определяют программу (план) работы некоторого экономического объекта. Слово, «линейное» отражает факт линейной зависимости между переменными. При этом, как указано, задача обязательно имеет экстремальный характер, т.е. состоит в отыскании экстремума (максимума или минимума) целевой функции. Следует с самого начала предупредить: предпосылка линейности, когда в реальной экономике подавляющее большинство зависимостей носит более сложный нелинейный характер, есть огрубление, упрощение действительности. В некоторых случаях оно достаточно реалистично, в других же выводы, получаемые с помощью решения задач Л.п. оказываются весьма несовершенными. Рассмотрим две задачи Л.п. — на максимум и на минимум — на упрощенных примерах. Предположим, требуется разработать план производства двух видов продукции (объем первого — x1; второго — x2) с наиболее выгодным использованием трех видов ресурсов (наилучшим в смысле максимума общей прибыли от реализации плана). Условия задачи можно записать в виде таблицы (матрицы). Исходя из норм, зафиксированных в таблице, запишем неравенства (ограничения): a11x1 + a12x2 ? bi a21x1 + a22x2 ? b2 a31x1 + a32x2 ? b3 Это означает, что общий расход каждого из трех видов ресурсов не может быть больше его наличия. Поскольку выпуск продукции не может быть отрицательным, добавим еще два ограничения: x1? 0, x2? 0. Требуется найти такие значения x1 и x2, при которых общая сумма прибыли, т.е. величина c1 x1 + c2 x2 будет наибольшей, или короче: Удобно показать условия задачи на графике (рис. Л.2). Рис. Л.2 Линейное программирование, I (штриховкой окантована область допустимых решений) Любая точка здесь, обозначаемая координатами x1 и x2, составляет вариант искомого плана. Очевидно, что, например, все точки, находящиеся в области, ограниченной осями координат и прямой AA, удовлетворяют тому условию, что не может быть израсходовано первого ресурса больше, чем его у нас имеется в наличии (в случае, если точка находится на самой прямой, ресурс используется полностью). Если то же рассуждение отнести к остальным ограничениям, то станет ясно, что всем условиям задачи удовлетворяет любая точка, находящаяся в пределах области, края которой заштрихованы, — она называется областью допустимых решений (или областью допустимых значений, допустимым множеством). Остается найти ту из них, которая даст наибольшую прибыль, т.е. максимум целевой функции. Выбрав произвольно прямую c1x1 + c2x2 = П и обозначив ее MM, находим на чертеже все точки (варианты планов), где прибыль одинакова при любом сочетании x1 и x2 (см. Линия уровня). Перемещая эту линию параллельно ее исходному положению, найдем точку, которая в наибольшей мере удалена от начала координат, однако не вышла за пределы области допустимых значений. (Перемещая линию уровня еще дальше, уже выходим из нее и, следовательно, нарушаем ограничения задачи). Точка M0 и будет искомым оптимальным планом. Она находится в одной из вершин многоугольника. Может быть и такой случай, когда линия уровня совпадает с одной из прямых, ограничивающих область допустимых значений, тогда оптимальным будет любой план, находящийся на соответствующем отрезке. Координаты точки M0 (т.е. оптимальный план) можно найти, решая совместно уравнения тех прямых, на пересечении которых она находится. Противоположна изложенной другая задача Л.п.: поиск минимума функции при заданных ограничениях. Такая задача возникает, например, когда требуется найти наиболее дешевую смесь некоторых продуктов, содержащих необходимые компоненты (см. Задача о диете). При этом известно содержание каждого компонента в единице исходного продукта — aij, ее себестоимость — cj ; задается потребность в искомых компонентах — bi. Эти данные можно записать в таблице (матрице), сходной с той, которая приведена выше, а затем построить уравнения как ограничений, так и целевой функции. Предыдущая задача решалась графически. Рассуждая аналогично, можно построить график (рис. Л.3), каждая точка которого — вариант искомого плана: сочетания разных количеств продуктов x1 и x2. Рис.Л.3 Линейное программирование, II Область допустимых решений здесь ничем сверху не ограничена: нужное количество заданных компонентов тем легче получить, чем больше исходных продуктов. Но требуется найти наиболее выгодное их сочетание. Пунктирные линии, как и в предыдущем примере, — линии уровня. Здесь они соединяют планы, при которых себестоимость смесей исходных продуктов одинакова. Линия, соответствующая наименьшему ее значению при заданных требованиях, — линия MM. Искомый оптимальный план — в точке M0. Приведенные крайне упрощенные примеры демонстрируют основные особенности задачи Л.п. Реальные задачи, насчитывающие много переменных, нельзя изобразить на плоскости — для их геометрической интерпретации используются абстрактные многомерные пространства. При этом допустимое решение задачи — точка в n-мерном пространстве, множество всех допустимых решений — выпуклое множество в этом пространстве (выпуклый многогранник). Задачи Л.п., в которых нормативы (или коэффициенты), объемы ресурсов («константы ограничений«) или коэффициенты целевой функции содержат случайные элементы, называются задачами линейного стохастического программирования; когда же одна или несколько независимых переменных могут принимать только целочисленные значения, то перед нами задача линейного целочисленного программирования. В экономике широко применяются линейно-программные методы решения задач размещения производства (см. Транспортная задача), расчета рационов для скота (см. Задача диеты), наилучшего использования материалов (см. Задача о раскрое), распределения ресурсов по работам, которые надо выполнять (см. Распределительная задача) и т.д. Разработан целый ряд вычислительных приемов, позволяющих решать на ЭВМ задачи линейного программирования, насчитывающие сотни и тысячи переменных, неравенств и уравнений. Среди них наибольшее распространение приобрели методы последовательного улучшения допустимого решения (см. Симплексный метод, Базисное решение), а также декомпозиционные методы решения крупноразмерных задач, методы динамического программирования и др. Сама разработка и исследование таких методов — развитая область вычислительной математики. Один из видов решения имеет особое значение для экономической интерпретации задачи Л.п. Он связан с тем, что каждой прямой задаче Л.п. соответствует другая, симметричная ей двойственная задача (подробнее см. также Двойственность в линейном программировании). Если в качестве прямой принять задачу максимизации выпуска продукции (или объема реализации, прибыли и т.д.), то двойственная задача заключается, наоборот, в нахождении таких оценок ресурсов, которые минимизируют затраты. В случае оптимального решения ее целевая функция — сумма произведений оценки (цены) vi каждого ресурса на его количество bi— то есть равна целевой функции прямой задачи. Эта цена называется объективно обусловленной, или оптимальной оценкой, или разрешающим множителем. Основополагающий принцип Л.п. состоит в том, что в оптимальном плане и при оптимальных оценках всех ресурсов затраты и результаты равны. Оценки двойственной задачи обладают замечательными свойствами: они показывают, насколько возрастет (или уменьшится) целевая функция прямой задачи при увеличении (или уменьшении) запаса соответствующего вида ресурсов на единицу. В частности, чем больше в нашем распоряжении данного ресурса по сравнению с потребностью в нем, тем ниже будет оценка, и наоборот. Не решая прямую задачу, по оценкам ресурсов, полученных в двойственной задаче, можно найти оптимальный план: в него войдут все технологические способы, которые оправдывают затраты, исчисленные в этих оценках (см. Объективно обусловленные (оптимальные) оценки). Первооткрыватель Л.п. — советский ученый, академик, лауреат Ленинской, Государственной и Нобелевской премий Л.В.Канторович. В 1939 г. он решил математически несколько задач: о наилучшей загрузке машин, о раскрое материалов с наименьшими расходами, о распределении грузов по нескольким видам транспорта и др., при этом разработав универсальный метод решения этих задач, а также различные алгоритмы, реализующие его. Л.В.Канторович впервые точно сформулировал такие важные и теперь широко принятые экономико-математические понятия, как оптимальность плана, оптимальное распределение ресурсов, объективно обусловленные (оптимальные) оценки, указав многочисленные области экономики, где могут быть применены экономико-математические методы принятия оптимальных решений. Позднее, в 40—50-х годах, многое сделали в этой области американские ученые — экономист Т.Купманс и математик Дж. Данциг. Последнему принадлежит термин «линейное программирование». См. также: Ассортиментные задачи, Базисное решение, Блочное программирование, Булево линейное программирование, Ведущий столбец, Ведущая строка, Вершина допустимого многогранника, Вырожденная задача, Гомори способ, Граничная точка, Двойственная задача, Двойственность в линейном программировании, Дифференциальные ренты, Дополняющая нежесткость, Жесткость и нежесткость ограничений ЛП, Задача диеты, Задача о назначениях, Задача о раскрое, Задачи размещения, Исходные уравнения, Куна — Таккера условия, Множители Лагранжа, Область допустимых решений, Опорная прямая, Распределительные задачи, Седловая точка, Симплексная таблица, Симплексный метод, Транспортная задача.
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Русско-английский словарь нормативно-технической терминологии > линейное программирование

  • 4 выводить на дорогу

    1) (помогать кому-либо найти своё место в жизни, стать вполне самостоятельным) set smb. on his feet; bring smb. up

    - Всех пятерых детей на ноги поставила, на дорогу вывела. Худому никого не научила. (Н. Рыленков, Родные места) — 'I've brought up my five children by myself, set them on their feet. I've taught them nothing bad.'

    2) ( помогать найти правильную линию поведения) lead smb. into the open road (of smth.); help smb. on to the high road (of smth.)

    Анюта вывела его, Демьяна, на новую дорогу, привела к покою и радости. (Т. Назарова, Твёрдой поступью) — Anyuta helped Demyan on to a new high road, she led him to joy and peace.

    Русско-английский фразеологический словарь > выводить на дорогу

  • 5 косить

    Кашивать
    I. (срезывать косой) косити (кошу, косиш), (скашивать) скошувати, (резать) тнути, тяти (тну, тнеш, тнемо). [Ой там по-над яром косар сіно косить (Пісня). Чоловік скошує отаву (Рудан.). Було брати косу да травиченьку тяти (Рудч.). Тне косар, не спочиває (Шевч.)]. -сить у самой земли - косити при землі; закладом косити. -сить на крюк - косити на грабки, (без крюка) косити на голу косу. -сить в прислон - косити на стінку, (на покос) косити на покіс, на поліг. Кося найти что-либо - викосити кого, що. [Викосили солов'я (Пісня)]. -сить, отрабатывая за что-либо - відкошувати (за) що. Кошенный и Кошёный - кошений.
    II. Косить -
    1) (линию) кривити, косити, скошувати, на косяка (навкоси, нав(с)кіс) класти (проводити, вести, робити) що. -сить лицо, губы, рот - кривити лице, губи, рота. -сить глазами - косим бути, скошувати очі, зизом дивитися. Он -сит - він косий (косоокий);
    2) (ср. зал.) кривити, -ся, на косяка, навкоси йти, піти, (о глазах) косити; срвн.
    II. Коситься. [Опускалися й лукаво косили очі (Ніков.)]. Его -сит (безл.) - його зводить, корчить, судомить, судить. Отсюда начало -сить - відси пішло на косяка.
    * * *
    I
    (косой, косилкой, перен.) коси́ти
    II
    1) (направлять вкось, кривить) переко́шувати, коси́ти, криви́ти
    2) (смотреть искоса, сбоку) коси́ти, ско́шувати
    3) ( страдать косоглазием) коси́ти; диал. зи́зом диви́тися

    он коси́т на оди́н глаз — він ко́сить (ко́сий) на одне́ о́ко

    Русско-украинский словарь > косить

См. также в других словарях:

  • Найти линию — НАХОДИТЬ ЛИНИЮ. НАЙТИ ЛИНИЮ. Устар. Избирать верный тон, предмет разговора и т. п. Николушка долго не мог произнести ничего, кроме мычания, затем, найдя линию, стал говорить о том, что вся его жизнь сплошная борьба и трагедия (А. Н. Толстой.… …   Фразеологический словарь русского литературного языка

  • Находить линию — НАХОДИТЬ ЛИНИЮ. НАЙТИ ЛИНИЮ. Устар. Избирать верный тон, предмет разговора и т. п. Николушка долго не мог произнести ничего, кроме мычания, затем, найдя линию, стал говорить о том, что вся его жизнь сплошная борьба и трагедия (А. Н. Толстой.… …   Фразеологический словарь русского литературного языка

  • СХИЗОФРЕНИЯ — (отгреч. schizo расщепляю и phren душа, ум), псих, заболевание из группы т. н. органических и деструктивных процессов, характеризующееся гл. обр. расщеплением псих, деятельности человека. Проблема С. как определенного психоза принадлежит к числу… …   Большая медицинская энциклопедия

  • Регрессионный анализ — [re­g­ression analysis] раздел математической статистики, объединяющий практические методы исследования регрессионной зависимости (см. Регрессия) между величинами по данным статистических наблюдений. Итальянский статистик Р.Бенини, как считается …   Экономико-математический словарь

  • регрессионный анализ — Метод оценки, использующий регрессионный способ по измеренным значениям, например, для сортировки по классам. [Система неразрушающего контроля. Виды (методы) и технология неразрушающего контроля. Термины и определения (справочное пособие). Москва …   Справочник технического переводчика

  • ИЗОПЕРИМЕТРИЧЕСКАЯ ЗАДАЧА — одна из основных задач классического вариационного исчисления. И. з. состоит в минимизации функционала: при ограничениях вида и нек рых краевых условиях. И. з. приводится к Лагранжа задаче при помощи введения новых переменных г, , удовлетворяющих …   Математическая энциклопедия

  • Прокл Диадох — Πρόκλος ὁ Διάδοχος Дата рождения: 8 февраля 412(0412 02 08) Место рождения: Византий Дата смерти: 17 апреля …   Википедия

  • Павел (Горшков) — Игумен Павел (в миру Пётр Михайлович Горшков; 20 августа 1867, село Дединово, Зарайский уезд, Рязанская губерния  6 июля 1950, близ Тайшета)  игумен Русской православной церкви, наместник Псково Печерского монастыря. Содержание 1… …   Википедия

  • Теория волн Эллиотта — (Elliott Wave Theory) Теория волн Эллиотта это математическая теория об изменении поведения общества или финансовых рынков Все о волновой теории Эллиотта: видео, книги, статьи о теории волн, информация о советниках и индикаторах волн Эллиотта… …   Энциклопедия инвестора

  • Русская литература — I.ВВЕДЕНИЕ II.РУССКАЯ УСТНАЯ ПОЭЗИЯ А.Периодизация истории устной поэзии Б.Развитие старинной устной поэзии 1.Древнейшие истоки устной поэзии. Устнопоэтическое творчество древней Руси с X до середины XVIв. 2.Устная поэзия с середины XVI до конца… …   Литературная энциклопедия

  • Ломоносов, Михаил Васильевич — — ученый и писатель, действительный член Российской Академии Наук, профессор химии С. Петербургского университета; родился в дер. Денисовке, Архангельской губ., 8 ноября 1711 г., скончался в С. Петербурге 4 апреля 1765 года. В настоящее… …   Большая биографическая энциклопедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»